Improved spatial localization of post-stimulus BOLD undershoot relative to positive BOLD.
نویسندگان
چکیده
The negative blood oxygenation level-dependent (BOLD) signal following the cessation of stimulation (post-stimulus BOLD undershoot) is observed in functional magnetic resonance imaging (fMRI) studies. However, its spatial characteristics are unknown. To investigate this, gradient-echo BOLD fMRI in response to visual stimulus was obtained in isoflurane-anesthetized cats at 9.4 T. Since the middle cortical layer (layer 4) is known to have the highest metabolic and cerebral blood volume (CBV) responses, images were obtained to view the cortical cross-section. Robust post-stimulus BOLD undershoot was observed in all studies, and lasted longer than 30 s after the cessation of 40-60 s stimulation. The magnitude of post-stimulus BOLD undershoot was linearly dependent on echo time with little intercept when extrapolating to TE = 0, indicating that the T2* change is the major cause of the BOLD undershoot. The post-stimulus BOLD undershoot was observed within the cortex and near the surface of the cortex, while the prolonged CBV elevation was observed only at the middle of the cortex. Within the cortex, the largest post-stimulus undershoot was detected at the middle of the cortex, similar to the CBV increase during the stimulation period. Our findings demonstrate that, even though there is significant contribution from pial vessel signals, the post-stimulus undershoot BOLD signal is useful to improve the spatial localization of fMRI to active cortical sites.
منابع مشابه
Hemodynamic responses following brief breath-holding and visual stimulation reconcile the vascular compliance and sustained oxygen metabolism origins for the BOLD post-stimulus undershoot in human brain
Introduction: The well-known BOLD post-stimulus undershoot has been attributed to two possible origins: (i) delayed vascular compliance based on delayed cerebral blood volume (CBV) recovery (1,2) or undershoot in cerebral blood flow (CBF) (3) with recovery of oxygen metabolism; (ii) sustained oxygen metabolism with speedy CBV and CBF recovery after stimulus cessation (4,5). Recently, high-resol...
متن کاملStimulus-dependent BOLD and perfusion dynamics in human V1.
Blood oxygenation level-dependent (BOLD) fMRI signals often exhibit pronounced over- or undershoot upon changes in stimulation state. Current models postulate that this is due to the delayed onset or decay of perfusion-dependent attenuating responses such as increased cerebral blood volume or oxygen consumption, which are presumed to lag behind the rapid adjustment of blood flow rate to a new s...
متن کاملOrigins of the BOLD post-stimulus undershoot
The interpretation of the blood-oxygenation level-dependent (BOLD) post-stimulus undershoot has been a topic of considerable interest, as the mechanisms behind this prominent BOLD transient may provide valuable clues on the neurovascular response process and energy supply routes of the brain. Biomechanical theories explain the origin of the BOLD undershoot through the passive ballooning of post...
متن کاملInvestigating the post-stimulus undershoot of the BOLD signal--a simultaneous fMRI and fNIRS study.
Measuring the hemodynamic response with functional magnetic resonance imaging (fMRI) together with functional near-infrared spectroscopy (fNIRS) may overcome limitations of single-method approaches. Accordingly, we measured the event-related hemodynamic response with both imaging methods simultaneously in young subjects during visual stimulation. An intertrial interval of 60 s was chosen to inc...
متن کاملMRI of functional deactivation: temporal and spatial characteristics of oxygenation-sensitive responses in human visual cortex.
Magnetic resonance imaging (MRI) of neuronal "activation" relies on the elevation of blood flow and oxygenation and a related increase of the blood oxygenation level-dependent (BOLD) MRI signal. Because most cognitive paradigms involve both switches from a low degree of activity to a high degree of activity and vice versa, we have undertaken a baseline study of the temporal and spatial characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2007